On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations

نویسندگان

  • Daniel Coutand
  • Steve Shkoller
چکیده

We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time “splash” (or “splat”) singularity first introduced in Castro et al. (Splash singularity for water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Finite-time Splash & Splat Singularities for the 3-d Free-surface Euler Equations

We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time “splash” (or “splat”) singularity first introduced in [9], wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a bre...

متن کامل

Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.

In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler...

متن کامل

Surface Effects on Free Vibration Analysis of Nanobeams Using Nonlocal Elasticity: A Comparison Between Euler-Bernoulli and Timoshenko

In this paper, surface effects including surface elasticity, surface stress and surface density, on the free vibration analysis of Euler-Bernoulli and Timoshenko nanobeams are considered using nonlocal elasticity theory. To this end, the balance conditions between nanobeam bulk and its surfaces are considered to be satisfied assuming a linear variation for the component of the normal stress thr...

متن کامل

Splat Formation Mechanism in Thermal Spraying*

In order to understand the splat formation process of individual splat deposited by thermal spraying, commercially available Nickel powders with diameter of several tens micrometers were thermally sprayed onto mirror polished AISI304 substrate surface. The deposited splat shows transition phenomenon from splash type to disk one in flattening on collision onto substrate surface according to both...

متن کامل

Implementing Basic Displacement Function to Analyze Free Vibration Rotation of Non-Prismatic Euler-Bernoulli Beams

Rotating beams have been considerably appealing to engineers and designers of complex structures i.e. aircraft’s propeller and windmill turbines. In this paper, a new flexibility-based method is proposed for the dynamic analysis of rotating non-prismatic Euler-Bernoulli beams. The flexibility basis of the method ensures the true satisfaction of equilibrium equations at any interior point of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013